

Seventh Semester B.E. Degree Examination, June/July 2017 **Power Electronics**

Time: 3 hrs. Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Draw the control characteristics of SCR, GTO and MCT with circuit diagrams and waveforms of control signal and output voltage. (09 Marks)
 - b. What is Schottky diode? Mention its advantages.

(04 Marks)

- c. What are the peripheral effects of power electronic equipment and mention remedies of its. (07 Marks)
- 2 Explain the following parameters with respect to switching limits:
 - (i) Second breakdown (SB).
 - (ii) Forward -biased safe operating area.
 - (iii) Power derating.
 - (iv) Breakdown voltages.

(12 Marks)

b. Explain proportional and antisaturation control of a base drive.

(08 Marks)

a. For the circuit shown in Fig. Q3 (a) obtain the minimum gate pulse width is required for reliable triggering of the SCR if gated at $\frac{\pi}{3}$ angle in every +ve half cycle. Assume $V_s = 325 \sin 314t$ and latching current of 15 mA. (06 Marks)

- Explain the operation of a full wave RC-firing circuit with waveforms.
- (08 Marks)

Explain how thyristors are protected against high $\frac{di}{dt}$.

- (06 Marks)
- 4 For the circuit shown in Fig. Q4 (a), find the average load voltage and current if the load resistance is 10 Ω and firing angle is 45°. Assume supply of 230 V, 50 Hz. (06 Marks)

Fig. Q4 (a)

- b. Explain the operation of single phase semiconverter with circuit and waveforms. Derive the expression for the average and rms value of the output voltage. (Assume RL-load).
- c. What are the advantages of circulating current mode dual converter?

(10 Marks) (04 Marks)

- $\frac{\mathbf{PART} \mathbf{B}}{\text{Explain the operation of a self commutation by resonating load and also derive the}}$ expression of $i(t) = V_s \sqrt{\frac{C}{L}} \sin \left(\frac{1}{\sqrt{LC}} t \right)$. (12 Marks)
 - b. For the circuit shown in Fig. Q5 (b) the current through R_1 and R_2 is 25 A and turn off time of both SCR's is 40 µsec. Find the value of capacitor for successful commutation. (04 Marks)

Compare natural and forced commutation.

(04 Marks)

- Explain the operation of a single phase Bi-directional controller with resistive load. Derive 6 the expression of RMS value of the output voltage.
 - A single phase AC voltage controller shown in Fig. Q6 (b) has a resistive load of 10 Ω and input voltage of 120 V, 60 Hz. The delay angle of thyristor T_1 is $\frac{\pi}{2}$. Determine
 - RMS value of the output voltage. (i)
 - (ii) Input power factor.
 - Average input current. (iii)

(07 Marks)

Mention the applications of AC voltage controllers.

(03 Marks)

- Explain the working principles of step down chopper with RL-load. Derive the expression o (14 Marks peak-peak ripple in the load current.
 - A step up chopper has input voltage of 220 V and output voltage of 660 V. If the non-conducting time of thyristor chopper is 100 µsec. Compute the pulse width of the outpu (06 Marks voltage. (conduction period).
- Explain the following performance parameters of a inverters: 8
 - Harmonic factor of nth harmonic. (i)
 - Total harmonic distortion. (ii)
 - Distortion factor.

(06 Marks

Explain the operation of single phase bridge inverters.

(10 Marks

What is inverter? Mention applications of it.

(04 Marks